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We analyze numerical mass fluxes with an emphasis on their capability for ac-
curately capturing shock and contact discontinuities. The study of mass flux is use-
ful because it is the term common to all conservation equations and the numerical
diffusivity introduced in it bears a direct consequence to the prediction of contact
(stationary and moving) discontinuities, which are considered to be the limiting case
of the boundary layer. We examine several prominent numerical flux schemes and
analyze the structure of numerical diffusivity. This leads to a detailed investigation
into the cause of certain catastrophic breakdowns by some numerical flux schemes.
In particular, we identify the dissipative terms that are responsible for shock instabil-
ities, such as the odd—even decoupling and the so-called “carbuncle phenomenon.”
As a result, we propose a conjecture stating the connection of the pressure differ-
ence term to these multidimensional shock instabilities and hence a cure to those
difficulties. The validity of this conjecture has been confirmed by examining a wide
class of upwind schemes. The conjecture is useful to the flux function development,
for it indicates whether the flux scheme under consideration will be afflicted with
these kinds of failings. Thus, a class of shock-stable schemes can be identified. In-
terestingly, a shock-stable scheme’s self-correcting capability is demonstrated with
respect to carbuncle-contaminated profiles for flows at both low supersonic and high
Mach numbers.

Key Words:upwind methods; mass flux; shock (carbuncle) instability; AUSM
schemes.

1. INTRODUCTION

Numerical representation of inviscid fluxes, namely the numerical flux function, has b
a subject of intensive effort by many researchers during the past three decades. We cle
this paper that it plays a central role in affecting the success of a calculation, especially
regard to robustness and accuracy. Despite the enormous progress achieved, defici
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624 MENG-SING LIOU

have also been experienced. The framework of the Riemann solution by Godunov
has dominated the upwind community and has been hailed as the approach to follo
the standard for benchmarking any new schemes. This is rightly so for a large clas
problems. Yet less well known are the fundamental deficiencies of the Godunov sch
and its approximation schemes. The so-called shock instability in multidimensions [2
a prime example of this fundamental failure, along with the nonexistence of a solution
the strong receding (or double rarefaction) flows [3]. These two failures are believed tc
caused by different mechanisms. We will address the first issue in this paper.

We show in this paper that the mass flux is the most essential element in construc
a robust and accurate numerical flux that is free of the above two anomalies. This 1
be understood by realizing that the mass flux is common to the convective part in e\
conservation equation of the fluid flows. It also provides a means for coupling all equatic
We demonstrate a set of simple and effective tools/criteria for designing the mass flux, w
in turn delivers robustness and accuracy for all the stringent test problems known to
author, some of which are failed by the Godunov scheme and other prominent schemes
as those by Roe [4] and Osher and Solomon [5]. As a result of this investigation, we h
identified that the root of the multidimensional shock instability, which is manifested by t
odd—even decoupling and “carbuncle” phenomena, is the existence of a pressure tel
the mass flux. Hence, identification of the pressure term in the mass flux of a sch
can provide a quick check as to its predictability for these problems. This claim is furtl
supported in the numerical tests because the anomalies will disappear with the remov
this pressure term in the original schemes.

To demonstrate the properties analyzed, we will consider mostly the unsteady calculat
because they generally shed more light on the capability of the scheme in terms of robus
and accuracy.

The paper is organized as follows. In Section 2, we give an interesting form of invis
flux in generalized 3D coordinates. Then we present in Section 3 a general formula
of numerical flux, especially the mass flux. The shock instability is analyzed in detail
Section 4. We conclude this paper with summary remarks.

2. INVISCID FLUX

For the purposes of this paper, it is only necessary to consider the Euler equations, w
we write specifically for fluids obeying the ideal gas law in multi-space dimensions,

U ,
S TdivF =0, 1)

whereU contains the usual conservative variables BreF,i + Fyj + F;k is the invis-
cid flux. We will denote by an overhead arrow the vectors associated with the phys
(Cartesian) coordinates in three dimensions. It turns out to be intriguing to write thie flu
as

F=F94+P=rv+P, )
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where

0
1 -
u ) pL

w=|v | P=|pj (3)

w k
H p

0

The first term inF is theconvectivelux F©, indicating the convection of by the mass
flux mand the second term is tipgessureflux P, containing nothing but the pressure.
The mass fluxh and pressure fluR, respectively, consist of three Cartesian component

r?1=mxf+myf+ K = pui + pvj + pwk = pV, (4)

and

0
<
Il

0 0
p 0
P=Pdi+Pyj+Pk P,=]|0 pl, P= (5)
0 0
0 0

o T o O o

Then we can further express the component fluxes in the direction®ndz in a unified
form,

Fi=mv+ B, i=X,y,Z (6)
and
F = (W + Py)i + (hy W + Py)j + (h,¥ + P,k (7)

In a control volume, the mass fluk, through a control surface having a unit norma
vectori = (ny, Ny, ;) is given by

thn = pV - i = Nty + Nyt + Ny, (8)
and the flux is the combination of the three component fluxes,

0
Ny
Fo = F - A = nyFy + nyFy + N,F, = W + Py, Ph=p| Ny |. )
nz
0

Formally this equation looks the same as that along the coordinate direction, Eq.
Hence, at each control surface, the mass flux is treated in a one-dimensional fashion. £
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discrete level, this is all one needs to define for the flux at the interface in a finite volur
Hereafter, we will assume that this local orientation has been accomplished and the vel
vector (hence mass flux) decomposed into components normal and parallel to the su
vectorsi. Therefore, the subscriptsdenoting the normal component will be dropped.

From the above equations, the principal quantitiesjragain are the convective flux
and the pressure flux. The distinction of these two fluxes gives rise to the basis for
development of the AUSM-family schemes. The fact that a common massflappears
in all equations is rather clear in the above derivations at the continuum level. Since the r
flux is common to all equations, its effects will thus perpetuate to all variables. Hence,
submitthatitis desirable to observe this fact at the discrete level as well when devising a
scheme. We note that several modern numerical schemes do not follow this criterion. W
it is not necessary to follow this criterion, however, significant benefits can be realiz
otherwise. For example, the numerical dissipation term is scalar even for the syster
equations; itis just as easy to add more conservation equations insofar as the numerice
is concerned.

As a primary objective of this paper, we will demonstrate that the mass flux holds
important key in explaining certain catastrophic failings associated with existing schen

3. NUMERICAL MASS FLUXES

It is possible to write a numerical flux, which explicitly expresses a common mass fl
in the general form

0
P1/2Nx
f1/2 = [‘hi—/z‘PL + rhI/Z\I/R + | Py2ny |, (10)
P1/2N2
1)

where the subscript has been deleted as indicated above. The subscripts L and R
understood to mean the cell centers on either side of the interface at which the nol
vector is assumed, for convenience, to point from L to R.

It must be noted that the flux expressed in the form of Eq. (10) implies that the numer
dissipation is of the scalar, rather than the matrix, form, because the same fhi;tpme
applied throughout for all conservation equations. This type of form however can not
done for the flux difference splitting schemes, like the Roe or Osher—Soloman splitti
The former encompasses many existing schemes, such as central differencing with arti
damping, and those to be discussed in this paper. The latter includes the Roe and O
Solomon schemes. A main theme of this paper is to show that the flux expressed in Eq.
has attractive properties which we will bring forth wherever appropriate.

The quantitieg(rhy ,, rhy ) refer to the flux components normal to the interface of :
discrete volume and are required to satisfy (see Corollary 1)

() (thi ) < 0. (11)
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In many schemes, both are mutually exclusive, i.e.,

(thyp)(thy,) = 0. (12)
From the first element of Eq. (10), we have the expression of the mass flux
hyz = M, + hy,. (13)
Here we call the readers’ attention that in gene?n%,l2 # (2 & |rhy2|)/2; see Egs. (29)

and (33) for the Van Leer and HLLE schemes. Using Eqg. (13), one can readily rew
Eq. (10) as

0
1 1 P1/2Nx
fio = éml/Z(\IJL + WR) — EDm(‘I’R — W)+ | P2y |, (14)
P1/2N;
é
where the dissipation terr®),, is defined as
D = hy), — thy . (15)

This term is a scalar quantity, common to all equations, and is expected to be nonneg
in order to provide proper upwinding, thus ensuring stability. Hence the differences am
the following schemes lie chiefly in the definitionsmf/z, P12, andé. The functions is
zero for the AUSM-family schemes and nonzero for the others.

Of all the existing numerical flux schemes, only those with shalar, as opposed to
matrix, dissipation term will yield a common mass flux. Thus, the AUSM-type, Van Lee
type [6, 7], HLLE [8], and CUSP [16, 21] schemes can be classified as the scalar upv
schemes. The Roe, Osher—Solomon, and improved versions of the HLLE schemes [©
belong to the matrix upwind schemes.

In the next section we will examine the above schemes with focus on the mass f
consequently leading to a new interpretation of them.

To facilitate the discussion, we first define the split functions

MG M) = (M £ M), (16)
M (M), if (M| > 1,
M (M) = > 2 a2 . @an
iZ(M + 1D+ B(M-—-1)° —-1/16< B <1/2, otherwise
and
(M), if IM| > 1,
Pé,a)(M) _ <1)

%(M +1)2QF M) +aM(M2-1)%;, —3/4<a <3/16, otherwise
(18)
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The numeralsinthe subscriptMlﬁ), Maﬁ), andeg’a) indicate the degree of polynomials,
while the range of parameters, 8) is set to meet the monotonicity requirements. Ir
practice, we set = 3/16 and8 =1/8.

AUSM" [11]

Let ML = up,_/a1/2 andMg = Uy, /a1/2. Then we define

Ml/Z = Maqﬁ)(ML) + M(:;,B)(MR)a (193)

4 1
M5, = E(Ml/z + |My2|). (19b)
i2(UL, Ur) = pLag2My), = pras2 max(0, Myj2), (20a)
thy»(UL, Ur) = pray2My), = prag2min(0, My z). (20b)

Notice that a common speed of souag, =a(U., Ugr) is used in the formulation. In
[11], we give a special formula to defireg,» such that an exact shock capturing can b
achieved for a stationary normal shock. Otherwise any averages between the L and R ¢

should be appropriate.
Next the pressure at the interface is simply given by

P1/2 = P (ML) PL + P54, (MR) PR (21)
It is easy to show that a nonnegatiig, is obtained. Specifically,

oL, if My >0,

. 22
PR, otherwise (22)

D = aqul/g) = ’m1/2| = al/2| Ml/2| {

Itis noted thatM;,» andrhy» have the same sign becauh@zmz/z =0, rhit/2 = (rhy2 £
[hy2])/2. It makes no difference which variable @¥1/,, rhy/2) is used for switching in
Eq. (22).

AUSMDV [2]
Let

M{,(UL, Ur) = [@F ;M 5 (ML) + (1 — of)p) M, (M), (23a)
My,(UL, Ur) = [@1,,M 5 (MR) + (1 — @1,) Mg,(MR)], (23b)
together with the blending functions,

2f _ 2fr
— U, Ur) = f= . 23
f T fr w1,,(UL, Ur) fLt fr p/p (23c)

wf),(UL, Ur) =

We define

My = a1 (oL MI?g + or Ml_/g), (24)
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and

1
i, = > (2 + |rha)2

)’ rhI/z = rhl/2 - mIL/z- (25)
The pressure flux is defined identically as in Eq. (21). Also the dissipation is
Din = abg(tfy2) = [hyj2| = asja| (0. M1 + prMy2) - (26)

It is noted that the dissipatioP,, for the AUSM"™ and that for the AUSMDV turn out
to have the same form, i.erhy, 2|, but they differ in the appearance af andpr and that
Mf/le‘/zzo, VYM for AUSM™, but+# 0, as|M| <1 for AUSMDV. If in AUSMDV, o*
are constant, ther/z(Ml‘/z) depends otJ (Ur) alone. As a result, the mass flux given
in Eqg. (24) reduces to the form of the conventional flux-vector type splitfimgsyulting
in the smearing of contact discontinuities. Allowing thgt varies with flow variables, the
AUSMDV is made to be accurate for capturing contact discontinuities. This point will |
discussed in detail later.

Van Leer [6]

In the Van Leer scheme, we use the local speed of soandr ag, to define Mach
numbers,

ML =Un /a, Mg =uUn/ar. (27)

The split Mach numbers and pressure are those in Egs. (17) and (18) by settifig=0,
hence reduced in the degree of polynomials:

MG = MG o) P& = Poaco = TR F M)Mp,. (28)

Then, one can readily find in Eq. (10) the relationships

My, (UL) = prag M, (M), (29a)
My ,(Ur) = prarM 5 (MR), (29b)
P12 = P& (MU pL + Pz (M) PR, (30)
and
8= = g [EMEMaP) — BME M), ] @)

The higher degree polynomials givenin Egs. (17) and (18) can be used as wellafiée H
modification [7] for the energy flux is obtained whétis set to zero, leading to improved
prediction of temperature profile in the boundary layer.

1 This is true only for the mass flux, not the momentum and energy fluxes, because Eq. (25) is introduced i
AUSMDV scheme before using Eq. (10).
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Notice that the split mass fluxetﬂ:ﬁj2 in Eq. (29), depend on only one of the states, i.e.
either L or R, unlike the previous two schemes in which both states appeatr.
The dissipatiorD,, becomes

D = My, — My, = prag MG (ML) — prarM ) (MR) (32)

andrhy ,rhy , # 0 when|M| < 1.

HLLE [8]
We can rewrite the HLLE scheme in the form of Eq. (10) by setting

_, b*
mir/z(UL, Ur) = oL (UnL —b )m, (33a)
. b
thy2(UL, Ur) = pr(Un, — b )b+ o (33b)
b* —b~
Pra= i Lt ey PR (34)
and
btb~
8= —m(pR — pu). (35)

The quantitieb® are the speeds used for representing the right- and left-running wa
defined as follows:

bt = max@, bgr), br = max({y + &, Un, + aR), (36a)
b~ = min(0, by), b = min(0, — &, Uy, —aL). (36b)

The quantities denoted by~ are evaluated by the Roe averages. Some variations have
proposed in the literatures, but they do not differ in essence.

The interpretation of the HLLE scheme in the above framework is quite interesting ¢
to the author’s knowledge it has not been given in the literature elsewhere. The weight
in the pressure mass fluxes are the simplest form, based on the “positive” and “negal
portion of the widest wave angle possible(ls,_, Ug). In fact, one might further interpret
the HLLE splitting in terms of Mach number and pressure splittings as

P —Lbi Phie + Pawe =1 (37)
HLLE = o5 _p—° HLLE HLLE = -

and
Mie = (ML —b™/a)Pi e =0, Miue = (MR —b*/ag)Pp e < 0. (38)

The split mass and pressure fluxes appear to behave like a first-degree polynomi
(M +1) asb* > 0 andb™ <0, leading to nondifferentiability at the transition points. As
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in the Van Leer scheme in Eqg. (28), the split Mach numbers and pressures are relatec
simple fashion.

Interestingly, we can rewrite the HLLE flux in a form similar to that of the convention:
flux vector splitting,

My, = praa My e, (39a)
hy, = prARM - (39b)

and
P12 = PhiLLe PL + PhiLe Pr- (40)

i :t . .
However M§, ¢ andPy, g are functions of both states, i.€U, , Ug).
In summary, some observations concerning the above-listed schemes are in order.

1. All schemes involve automatic switching from the condition|fdi < 1 to that for
IM| > 1 and these switchings are determined by the wave speeds associated with nonl
fields(M + 1).

2. The split mass fluxed™ in all but the Van Leer schemes are a function of both th
L and R states.

3. The guantity involves the mixing of both and— wave speeds for the Van Leer
and HLLE schemes.

4. Mostimportantly, the mass fluk,» appears throughout the entire system of equ
tions and is the key element in defining the numerical flyx

COROLLARY 1. The splitmass fluxes of all schemes listed above possess the nonneg
and nonpositive properties

my,>0 and 2 < 0. (41)
Then the dissipation coefficieht,, satisfies the positivity property
Dm > 0. (42)

Proof. The proof for the AUSM, AUSMDV, and Van Leer schemes is obvious by
inspection. To prove them for the HLLE scheme, we just need to utilize the Coroll
established in the Appendix and the falots> 0 andb™ < 0.

In the remainder of this paper, analysis of the mass flux will be carried out. Conseque
we develop a criterion useful for the purpose of designing the mass flux. And we v
demonstrate how some prominent upwind schemes encounter difficulties when they d
satisfy this criterion.

We can write the mass flux in the most general form

1
hy2 = (M) — ED(ULv Ur), (43)
where(rh) is a sort of centrally weighted average. The simplest form is

1 1
(h) = E[(pun)L + (pUn)r] = é(mL + 1fR). (44)
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The dissipative terro(U__, Ur) can be further expanded in terms of differences of primitiv
variablesU = (p, U, p)", U= (ug, Uy, U3), as

D =D (U)Ap + Y D U)Au +DP(U)Ap, (45)
I

whereU(Uy, Ugr) are some mean quantities, whose precise definitions are immaterial
the present discussion. The difference operata(ie) = (e)gr — (o), .

Needless to say, different schemes will have different representations for each indivi
element inD and as such they contribute to a variety of numerical behaviors. In wt
follows, we shall give mass flux formulas for various schemes, including those given abc
By substituting the functionshf/z, we get the corresponding expression {idr) andD.

For the AUSM flux,

(M) = 3(pj + pj+D)U1j2, Uz = a12Map,
DY) = uysl, (46)
DP = 0.
For the AUSMDV flux,
(rh) = Z(rh + rhg), th = pup,
D? = 3(uc] + urD, (47)
DP = 2a,5(gL + gr) P L (M) = M 5 — M{, =0
= 2a3,2(0L + Or » L+ )l g = Map @ =Y
For the Van Leer flux,
() = 3(pL + pr) (ALME, (ML) + 8rM 5, (MR)),
DO = a M (M) — ar M, (Mg), (48)
DP — Q.
For the HLLE flux,
() = [b*(pun)L — b~ (pun)rl/ (b —b7),
D = _2b*b~/(bt —b"), (49)

DP — Q.

The coefficientD™ in the above schemes are somewhat more involvedTHanand
D®, but fortunately they are not important within the scope of the present investigatiol
Similarly, we can write the dissipation coefficientsrinfor the Roe schemes,

() = (g + mr)/2, m = pup
DY) = Ayl (50)
DP = (|| + |ral — 2/22]) /282,
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where{ix, k=1, 2, 3} = {u, — &, up, U, + a} and the quantities are understood to be eva
uated using the usual Roe averages. Note that the Roe flux does not fit in the express
Eqg. (10). Hence the mass flux is only used in the continuity equation.

Remark. We observe the following interesting properties pertaining to the abov
mentioned schemes. For any,|, Ug],

1) D» >0, for all schemes
@ DO =0, AUSMT, Van Leerand HLLE only (51)
>0, otherwise

We stress that this way of classifying the dissipation terms gives an interesting appre
to studying flux functions. Specifically, it provides a tool for discriminatingly detectin
causes of failures, because each individual term can be probed pathologically. This
become clear as we discuss Lemma 1 below and the Conjecture to be given in Sectiol

LEMMA 1. The exactsolution of the Riemann problem for a contact discontinuity movi
with speed yrequires that

DY =|ug| asu,p)L= U, pr=Us,p and p_# pr (52)

This is shown to be a sufficient and necessary condition. This result is useful for chec
the accuracy of numerical flux functions and it can provide us with a new insight ab
their behavior.

A special case is the stationary contact discontinuity wiogee 0. We find all but the
Van Leer and HLLE schemes listed above yield the exact reBiflt = 0. This is the argu-
ment that the schemes do not satisfy this condition are not suitable for accurate resol
of viscous layers because they behave like a contact discontinuity. Figure 1 display:s
2D viscous solutions of 8., =6 flow over a circular cylinder by the Van Leer, HLLE,
AUSMDV, and AUSM" schemes, confirming the above statement. Both the Van Leer ¢
HLLE solutions yield a diffused, thicker boundary layer as evident in the temperature pro
and a much lower enthalpy (respectively 5.21 and 4.90) at the stagnation point. Thes
the indication of excessive numerical dissipation. The AUSMDV and At Sdlutions,
on the other hand, predict a thinner boundary layer and give the value of the stagnze
enthalpy (12.8) that is already grid independent (to the third decimal point). Both soluti
are nearly identical, except in the neighborhood of the stagnation point. The nature of
merical diffusion also can be seen in the Stanton number distribution in the figure. Tht
scheme’s ability to accurately resolve a contact discontinuity is an important criterion
Lemma 1 is useful in this sense.

In what follows, we will primarily focus on the schemes that will at minimum presen
the stationary contact discontinuity. These are the schemes of Roe [4], Osher and Solc
[5], modified HLLE [8], AUSM', and AUSMDV [2, 11]. It can be checked easily that
they all satisfy Eq. (52). We note that while the original AUSM scheme [12] results
D) =0 for a stationary contact, it however does not satisfy (52) for a moving contz
The consequences are what is seen in Fig. 2, in which a glitch clearly shows up in a sl
moving contact discontinuity. The dramatic improvement by the AUSigheme is due to
the use of a common speed of sowng.
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Van Leer F.V.S. AUSM*
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HLLE(Expansion WS) AUSMDV: f=p/rho
Mach = 6.00 iwall = 1 Mach = 6.00 iwall = 5
JKMAX= 45 45 Res. = 0.116E-03 JIKMAX= 45 46 Res. = 0.740E-04
CFL = 0.75 Husg = 0.490E+01 CFL = 0.75 Hyag = 0.127E+02
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—4—p/p.. x0.25 o ~4—p/p.. X 0.25
—~T/T. [3Y ~~v-T/T..
S 10.0,
4 x
k]
8
~
S50
1
S
°%0 15 3.0
3 0.08 /R
<
sf 0.06
=
T 004
3
W 0.02
~
“ 0.09
0.0 90.0 -90.0 0.0 90.0
6 (deg) 6 (deg)

FIG. 1. Viscous solutions of &, =6 flow over a circular cylinder: comparison of calculations using the
Van Leer, HLLE, AUSM, and AUSMDV schemes.
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FIG. 2. Slowly moving contact; comparison of AUSM and AUSMolutions.
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The concept of using the common speed of sound turns out to be useful also in
formulation of the AUSMDV scheme. It is a necessary ingredient to blend two Ma
number distributions, Egs. (23), such that stationary and moving contact discontinuities
be accurately predicted. A sufficient condition for the AUSMDYV scheme to ensure Lemir
is found to be

PLOY 2 = PROT2, vB. (53)

Hence, many forms are possible fof so long as the above condition is met. A symmetn
form is proposed in Eq. (23c) witli = p/p. Next we will consider the performance of
each mass flux, specifically with respect to the odd—even decoupling and the carbt
phenomenon.

4. SHOCK INSTABILITY: AMULTIDIMENSIONAL PROBLEM

The catastrophic failings in the supersonic blunt body flow (dubbed the carbuncle
nomenon) and the odd—even grid perturbation problem have been reported in [17] and
investigated by several authors [13, 18, 19, 22]. These seemingly benign problems p
to be rather daunting for many upwind schemes, including the exact Riemann solve
Godunov [1] and the approximate ones by Roe [4] and Osher and Solomon [5]. Ever
our disappointment, the recent HUS [14], AUSMDV [2], and LDFSS [19] schemes cani
escape the difficulty.

In [2], we suggested that these type of failings can be describettarsszerssnumerical
instability associated with the shock wave. We called idheck instabilitypecause a small
disturbance near the shock results in a rather rapid amplification. It is a multidimensic
problem in which disturbances communicate, feed into each other, and grow in muli
mensions. Hence, multidimensional analysis is necessary. In a linear analysis, Quirk
pointed out that the pressure perturbation could feed into the density perturbation, resu
in a linear growth. He suggested the use of combined fluxes in the code so that one
scheme is favored over another locally. In [17, 18, 22], attempts to rectify the Roe schi
were focused on modifying the eigenvalues in the form of entropy fix. They all invol
a modification/contribution resulting from a multidimensional consideration. And cleal
there is more than one way to fix the problem. However, with these fixes, one is still
with the question ofvhat causes this shock instability—why are some flux schemes fr:
from it? What can one learn from the finding in order to help development of future fl
schemes? These are the main objectives of the present paper.

First, we give the following definition.

DEFINITION. A scheme is called shock stable if it does not yield an amplification
disturbances at the shock.

It must be noted that the occurrence of the carbuncle phenomenon for a shock-uns
scheme is sensitive to several factors, such as irregularity and aspect ratio of a grid, bc
ary condition, and shock strength. In other words, in the case of a shock-unstable sch
change in grid distribution or order of accuracy may add just enough dissipation to supp
the instability. Our experiences indicate that the grid symmetry for the blunt body pra
lem makes it easier to trigger the carbuncle phenomenon. Nevertheless, a shock-un:s
scheme will eventually lead to shock instability if subject to sufficient perturbations. So
perturbations are just on the order of double precision roundoff [22]. It is also importan
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FIG. 3. Suggested scenario of carbuncle phenomenon and the proposed fix.

remember that shock instability, by definition, requires the presence of a shock. Henc
strength is necessarily finite, albeit possibly small.

We suggested in [2] the following heuristic explanation to the events taking place dur
the development of the carbuncle phenomenon. When the shock wave is captured by a s
capturing scheme, intermediate (numerical) points are added to express a shock po:
numerically; see Fig. 3. In the 1-D case, this is not a problem for most existing schemes.
when the schemes are applied to a multidimensional calculation, these intermediate p
exchange information with the neighbors, which are also intermediate shock points.
suspectthatan unstable systemis developed, involving the exchange of information bet
these nonphysical states, which eventually leads to a catastrophic carbuncle instabili
this is true, then a mechanism needed to stabilize the shock by some “apprémchtrhes
becomes obvious. The idea behind this is that one wants to choose a substitute schem
can disrupt the communication of disturbances from one direction to another. We call
procedure “shock fix,” which we shall prescribe as follows.

Shock Fix

1. Set the shock-point (also sonic-point) flag,

uj—a; >0 and uj;;—aj41 <0, or

(54)
uj+a; >0 and uj41+aj41 <0,

%j =S§,j+1=17 if {

between grid poinj andj + 1 in the&-direction. The same procedure is also done for th
(n, ¢) directions.

2. Modify the numerical flux;, , in the&-direction by a dissipative scheme if a shock-
point in thetransversairections is detected. That is,
dissipative scheme  if (S,; + S, j11+ S, +Sj10) = 1
&1 = - . (55)
unmodified otherwise

2A general answer to the question of what is “appropriate” is the subject of this paper, but at this juncture
shall simply suggest a dissipative counterpart of the underlying scheme.
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FIG. 4. Odd-even grid perturbation problem by AUSMDV, without and with shock fix, Egs. (54)—(55).

This shock fix is general and can be applied to other numerical fluxes as well, suc
the Roe, Osher—-Solomon, and HUS methods. For the AUSMDV, we emgoglld FVS
scheme [7], because it is dissipative enough and conserves the total enthalpy for si
flows. It is noted that the numericalddél’s flux is now modified to include the common
speed of sound, thereby maintaining the contact-capturing capability. The numerical fl
in other directions are calculated in a similar way.

Figure 4 shows that the carbuncle phenomenon predicted by the unmodified AUSV
scheme is now completely removed with this proposed shock fix. More interestingly,
shock fix can be also applied to Roe’s approximate Riemann solver, for which the HL
scheme is considered to be a dissipative partner scheme. The result by the Roe sc
together with the shock fix via the HLLE scheme is shown in Fig. 5, where the instability
again totally eliminated. This indicates the validity of the proposed cure for the carbur
phenomenon, and the above results seem to support our belief about the dynamics «
instability process. We remark that this method does not use the pressure gradient for se
shock waves because the pressure gradient does not always provide accurate inforn
to distinguish a shock wave from a compressive wave.

280,0 300.0 280.0 . 300.0
Density Contours Density Contours
8.0 50.0 3.0 50.0
6.0 40.0 60 40.0
z W < 300 Z £ 300
3 4 2 2 40 @
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20} CFL =1.00 20} CFL =1.00
N = 400 10.0 N = 400 10.0
0.0 0.0 0.0 -
Y-axis(behind shock) X-axis(centerline) Y-axis(behind shock) X-axis(centerline)

FIG.5. Odd-even grid perturbation problem by the Roe scheme, without and with shock fix, Egs. (54)—(5
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Despite the success of this shock fix, it is still not so desirable to have, even thoug
may be invented on the basis of sound reasoning. It needs an ad hoc detection and it 1
fail when the problem involves interactions of complex features. Moreover, we are <
left with no clue as to why it works. In particular, the fact that the so-called “dissipati
scheme” to which the basic scheme is switched works was discovered by playing a hu
because adding more dissipation seems to be a good insurance policy. On the other
low diffusion schemes, such as AUSM or AUSIVhave also been known to be free from
these shock instabilities. So it is clear that adding dissipation is not necessarily a col
approach. Hence the puzzle remains to be unraveled.

In what follows we shall describe the attempt to identify the mechanism or the root
the problem—specifically the terms in the numerical fluxes that are responsible for tt
failings. With the mechanism understood, we will have a criterion that can specifice
suggest which are the alternative replacement schemes in the shock fix.

Further study suggests that the tef? in the mass flux plays a key role in causing the
shock instability. As a result, we have reached the following conjecture.

CONJECTURE The conditiorD® £ 0, ¥M, in the mass flux is necessary for a schem:
to developas t increasesthe shock instability as manifested by the odd—even decoupli
and carbuncle phenomena. On the other hahd conditionD® =0, VM, is sufficient for
a scheme to prevent the shock instability from occurring.

This conjecture immediately leads to the following result, according to the definition
a shock-stable scheme.

LEMMA 2. A scheme having the proper®y® =0 in the mass flux is a shock-stable
scheme.

Arigorous proof for the Conjecture is difficult, if notimpossible. But a heuristic argume
for a system involving a set of simplifying assumptions can be constructed and leads tc
result that the amplification factor is greater than unity, thus growth of disturbances. In [
Quirk gave a one-dimensional analysis showing the effect of pressure perturbation tc
density under the assumptions of no velocity perturbations. However, there was still no
specifically as to which term or flux was responsible for the anomalies.

Since a more general analysis has not yet been developed, we shall resort to the
merical proof with evidence to substantiate the validity of the condition and counter-pre
it by modifying those schemes afflicted with the instability in such a way that they ha
DP =0, VM.

Among the schemes that satisfy Lemma 1, AUS{driginal AUSM is of its special case)
is the only scheme in its original form that gives risexd =0, VM, while the AUSMDYV,
Roe schemes (as shown above), and others yield nonvanigifigvhen |M| < 1. For
Example, the Roe splitting in (50) becomes

oo fo if M > 1, )
“ l@—=|M]/a,  otherwise

While the expression ab‘P for the other schemes (such as AUSMDV in Eq. (47)) ma
be more complicated, the details are not essential for the discussion of shock instab
Most important of all is to recognize whether the tef exists or not. A summary of

the pressure coefficient of various popular shock capturing schemes is presented in Ta
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TABLE |
Summary of D® and Shock Instability

Scheme DP=0 Shock instability Lemma 1
AUSM* Yes No Yes
Van Leer Yes No No
HLLE Yes No No
AUSMDV (f =p/p) No Yes Yes
AUSMDV (f =1/p) Yes No Yes
HUS No Yes Yes
Roe No Yes Yes
Osher-Solomon No Yes Yes
HLLEM No Yes Yes
AUSM*-R No Yes Yes
CUSP Yes No Yes/rfo

2This depends on which version is used [21].

along with a column indicating shock instability. This clearly displays the close correlati
of the role of D'P term and the occurrence of the shock instability. The AUSMan Leer,

and HLLE schemes are the only ones listed in the table that are free of the anomalies.
among these three, the AUSMs the only one yielding the least dissipation for the viscou
calculation (recall Fig. 1), via obeying Lemma 1. More strikingly, there are many mc
schemes that follow Lemma 1, but gif&P = 0 and are afflicted with the shock instability.

Notice that in the framework of the AUSM schemes the only difference between AUSI
and AUSMDYV is in the definition of the mass fluit (see Egs. (20) and (23)—(24)). Thus, it
is natural to believe that the mass flux in Eq. (10) can be alternatively substituted with
mass flux in the Roe scheme, as suggested by Shima and Jounouchi [15], denoted h
AUSMT-R, for it falls in the form of the AUSM scheme.

We display the Mach contours in Fig. 6 for the odd—even grid perturbation problem
is evident that the Conjecture is confirmed by the fact that the Atightdicts the correct
solution and the AUSMDV, Roe, and AUSMR are afflicted with anomalies. Conversely,
if these schemes are modified in such a way &t =0, VM, then the instability is now
completely gone, as is evident in the figures. This trick is achieved by fiddling with t
linear field, i.e.,

|2l = maxa, |ul). (57)

In other words, thdinear field now is propagated with the speed of soundMs$< 1,
instead of the fluid speed. This is in contrast to the HLLE scheme in which the larg
values are adopted for tm@nlinearfields. We must note that this shock instability canno
be remedied in the Roe flux by tuning the entropy fix alone, because the fix is applie
the contribution associated with the nonlinear field, while the root really lies in the line
field. We must also point out that this modification unfortunately fouls up the property
Lemma 1 and thus is not suitable for the viscous solution. The modification in Eq. (57
intended only to support the Conjecture concerning the root of the shock instability.
shall call this the modified Roe scheme, denoted,Bgi the figure caption.

The original blending function in the AUSMDV scheme is chosen by including tt
pressure effect, which inadvertently leads to a nonvanishifiy thereby resulting in shock
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FIG. 6. Odd-even grid perturbation problem. Left, original schemes; right, modification®{fth= 0.
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instability. Fortunately, this can be easily corrected by retaining only the density effe
without sacrificing the accurate capturing of the contact discontinuity. This is achieved
defining

f=1/p, (58)
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instead off = p/p in Eq. (23) (also denoted in the caption of Fig. 6), while Eq. (53) sti
holds.

The modified HLLE (or HLLEM) scheme is also designed to reduce the numeri
dissipation for accurately resolving the contact discontinuity, by inserting a term result
from the linear field of the Roe scheme. In 1D, it is given by

f f b™b” 5 4R 59
HLLEM = fhite — m&“z 2. (59)
The variables in the added term are

o a _ 1

& = YT u= E(bL + br), (60a)

wherelii (i =1, 2, 3) are the right eigenvectors of Jacobi%l andoy is the coefficient
associated with the linear field in the expansiotJgf— U, in terms ofR;:

3
Ur—UL=> &R (60b)
i=1

Consequently, D® term is inserted, along with tHB term, which can be easily seen
from Eq. (50). It is exactly due to this process that the HLLEM inadvertently produc
shock instability and violates the positively conservative condition, while the original HLL
scheme does not; see Obayashi and Wada [10].

We include in Fig. 7 the density contours, along with the profiles of variallep, T)
along the stagnation streamline of the supersonic blunt body problem. The Alagsin
yields clean and smooth solutions; the original AUSMDV has tiny nonmonotone conto
near the stagnation streamline, which are now regularized after redefining the vari
f in the mass flux. Although the carbuncle phenomenon produced by the Roe sch
is catastrophic, it can be completely cured with the modification, Eq. (57), that enst
DP =0VM in rh.

It was reported by Pandolfi and D’Ambrosio in [20] that elongation of cells in the @

rection normal to the shock would promote shock instabilities. The authors concluded
“methods that explicitly deal with the contact surface display a clear evidence of carbut
phenomenon; if the interaction is very weak, or totally ignored, no carbuncle instabil
occurs.” They further suggested that AUSM and AUSHKIso suffered from the carbuncle
phenomenon. Figure 8 shows the calculated results using both AUSM and AsSimes
for a Mach 20 flow on a 32% 11 grid, which are twice as elongated as they used 320.
It is found that the shock position is stationary and remains smooth; the residual contir
to drop toward machine zero. Notice that the result of the AUSM scheme displays a r
nonmonotonicity along the stagnation streamline, resulting in an indented contour, w
the AUSM' result is monotonic (shown in Fig. 9). However, when using a second-orc
accurate procedure with limiters in the AUSM solution, the previous indented contou
cleared up and other contour lines become smoother.

Nevertheless, this nonmonotonicity must not be mistaken for the carbuncle phenome
or shock instabilities, because the latter will lead to a continued growth of disturban
which is manifested by a continued expansion of the shock front, eventually reaching
outer boundary of the computation domain. Examples of these instabilities are disple
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FIG. 7. Supersoni¢M,, = 6) blunt body problem; profiles along the stagnation streamline.
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FIG. 8. Pressure contours of a Mach 20 flow over a cylinder on ax321 grid using the AUSM scheme.
First-order (left) and second-order (right) accurate solutions.

in Figs. 7, 9, and 10 for the solution obtained by the Roe scheme. In Fig. 9, we display
enormously contaminated solution (left) after 2000 iterations and the resulting solution
continuing with the AUSM scheme (middle), together with the convergence rate. Fro
these results, we observe two interesting events: (1) once the initial phase of iteratiol
over, the convergence rate is identical, independent of the initial conditions, whether
be uniform or badly contaminated, and (2) the initial phase takes nearly the same numb
iterations to smooth out the contamination as in the case of a uniform free stream condi
In this example, we see the interestsejf-correctingoroperty of the shock-stable scheme,
AUSM,

104
) B ~ Initial condition
10% pt = Un'iﬁorm free ‘$tream
Al ’\ 0. Roe - Solution, q(h)
100 ..
21072
10—4 L
10—6 L
1078
0 4000 8000 12000
N

FIG.9. Mach 20 flow over a cylinder on a 32411 grid. Pressure contours obtained by the Roe scheme (lef
the AUSM' solution (middle) obtained by continuing from the left carbuncle solution—showing the capabil
of correcting the contaminated solution. The residual histories of the AUSNMitions from two different initial
conditions are also included (right).
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FIG. 10. Mach 2 flow over a cylinder on a 32040 grid. Displayed are the formation of the carbuncle
phenomena in the Roe solution (top row) and the correcting process by the AldSiMtion. Notice that the
outward motion of the shock is reversed after the employment of AUS8heme. The shock has been pushec
back to about one radius away from the cylinder after additional 1000 iterations. The remaining iterations re
and smooth out disturbances, and finally approach a steady solution.
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itvd= 2 muscl: primitive variables
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(b): RO€moq + E-Fix
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FIG. 11. Supersonic corner problem. The Roe flux with entropy fix produces shock instability which dis:
pears after the modification enforcifiy® = 0. A fine grid solution (at different instant) obtained with the AUSM
scheme is included for comparison, showing sharper resolution of shocks. All calculations were made with i
extrapolation of primitive variables using the Van Albada limiter.
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This self-correcting property holds for low supersonic speeds as well. In Fig. 10,
display a detailed evolution of the solutions fa¥la= 2 flow on a 320x 40 grid, at different
iteration steps, initially obtained by the Roe scheme with the entropy fix and followed
the AUSM" scheme. It can be seen vividly how the Roe-flux solution deteriorated intc
completely erratic situation and how this protuberant shock wave was pushed back tov
the body and the disturbances were smoothed out, eventually reaching the correct st
state solution. These and previous results suggest that the carbuncle phenomena
throughout the supersonic range and the AUS8theme is capable of correcting them.
This also suggests that the conjecture on the role of pressuré@may be valid for the
entire range oM > 1.

Finally, we consider the diffraction of a shock moving supersonically over&6ad.

In this calculation, a MUSCL-type linear interpolation of primitive variables is employe
along with the Van Albada limiter to maintain monotonicity. In contrast to the document
failings by several prominent flux schemes [9], the AUSKLIX demonstrates a robust
shock-capturing capability, as displayed in Fig. 11. We note that although the entropy
is sufficient for the Roe scheme to overcome the expansion fan at the corner, it is cle
useless in dealing with the shock-instability problem; see Fig. 11a. By the use of Eq. (
the shock anomalies associated with the moving shock disappears, as seen in Fig.
Included in Fig. 11 also is the AUSMDYV solution (Fig. 11d); we can see at this instan
slight indication of irregularity along the straight stem of the primary shock, a situati
similar to the Roe solution (Fig. 11a) but to a much lesser degree. The AUSldtions
on two grids are shown in Figs. 11c and 11e to be robust and free of such shock instab
the fine grid solution defines discontinuities with more sharpness as expected.

Remark on the pressure diffusion ternThere appears to be a strong belief that keepin
the D® term is beneficial, with which the author undoubtedly agrees. For example
will eliminate pressure oscillations in the boundary layer or along the direction in whi
the velocity tends to zero, leaving very little numerical dissipation necessary to couple
velocity and pressure. The question to be posed, however, is whether or netiéssaryo
have this term in the mass flux. My experience thus far has indicated tiattherm is not
necessary for moderate to high Mach numbers, but may be useful for very low Mach nun
flows. However, in the latter case, the shock instability question becomes an irrelevant f
since there is not a shock to speak of.

5. CONCLUDING REMARKS

The mass flux, which is a factor common to all inviscid fluxes of conservation laws,
shown to be important in constructing a numerical flux. A detailed analysis of the numeri
mass flux has proven to be very enlightening, and especially helpful for the purpost
designing a shock-stable scheme.

A number of mass flux schemes have been examined, especially with regard to the rc
the dissipative pressure term. Itis confirmed that this term is the root for causing the car
cle and the odd—even decoupling phenomena that we classify as shock instabilities. T
types of shock instabilities are multidimensional in nature because in one space dir
sion, the shock front is planar and no irregularities are allowed to occur in the second/t
directions.
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As a consequence of the proposed Conjecture, we have suggested a fix to fre
Roe scheme from developing these instabilities. Furthermore, we demonstrated the
correcting capability of a shock-stable scheme with respect to the carbuncle-contamin
profiles. We also have shown that the carbuncle phenomena occur not only in the
Machr-number flows, but also in the low supersonic Mach numbers.

APPENDIX
COROLLARY. Inthe HLLE scheme
u—-b >a and Wk —bt < —ag. (A1)

Proof. Sinceb™ = min(0, b.), we have

_ U, if b, >0,
u —b = i (A.2)
u.—b, otherwise

Fromb, = min(0 — &, u. — a,), we can further show:

1. b > 0; thusu_ > a,, since every argument in. must be nonnegative.
2. b <0; then

U — by {:a._, if u—a <0-4a, (A3)
>a_, otherwise
Hence,
u-—-b >a >0. (A.4)
Similarly, one can readily show
Ug — bT < —ag < 0. (A.5)
This completes the proof.
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